Evaluate The Expression: ${ \left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 }$

by ADMIN 99 views

=====================================================

Introduction


In this article, we will delve into the world of mathematics and evaluate a given expression. The expression is a combination of various mathematical operations, including exponentiation, multiplication, addition, and subtraction. Our goal is to simplify the expression and arrive at a final value.

Understanding the Expression


The given expression is:

(42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7

To evaluate this expression, we need to follow the order of operations (PEMDAS):

  1. Parentheses: Evaluate expressions inside parentheses first.
  2. Exponents: Evaluate any exponential expressions next.
  3. Multiplication and Division: Evaluate any multiplication and division operations from left to right.
  4. Addition and Subtraction: Finally, evaluate any addition and subtraction operations from left to right.

Step 1: Evaluate Expressions Inside Parentheses


The expression inside the first set of parentheses is 42+14^2 + 1. To evaluate this, we need to calculate the value of 424^2 first.

42=4Γ—4=164^2 = 4 \times 4 = 16

Now, we can add 1 to the result:

16+1=1716 + 1 = 17

So, the value of the expression inside the first set of parentheses is 17.

Step 2: Evaluate Exponential Expressions


The expression 242^4 is an exponential expression that needs to be evaluated next. To do this, we need to calculate the value of 242^4.

24=2Γ—2Γ—2Γ—2=162^4 = 2 \times 2 \times 2 \times 2 = 16

Step 3: Evaluate the Square Root


The expression 16\sqrt{16} is a square root that needs to be evaluated next. To do this, we need to find the value of the number that, when multiplied by itself, gives 16.

16=4\sqrt{16} = 4

Step 4: Evaluate Multiplication and Division Operations


Now that we have evaluated the exponential expressions and the square root, we can move on to the multiplication and division operations. The expression 24Γ—162^4 \times \sqrt{16} needs to be evaluated first.

24Γ—16=16Γ—4=642^4 \times \sqrt{16} = 16 \times 4 = 64

Step 5: Evaluate Addition and Subtraction Operations


Now that we have evaluated the multiplication and division operations, we can move on to the addition and subtraction operations. The expression (42+1)βˆ’24Γ—16\left(4^2 + 1\right) - 2^4 \times \sqrt{16} needs to be evaluated first.

(42+1)βˆ’24Γ—16=17βˆ’64=βˆ’47\left(4^2 + 1\right) - 2^4 \times \sqrt{16} = 17 - 64 = -47

Step 6: Evaluate the Expression Inside the Second Set of Parentheses


The expression inside the second set of parentheses is Rβˆ’3Γ—5R - 3 \times 5. To evaluate this, we need to calculate the value of 3Γ—53 \times 5 first.

3Γ—5=153 \times 5 = 15

Now, we can subtract 15 from R:

Rβˆ’15R - 15

Step 7: Combine the Results


Now that we have evaluated all the expressions, we can combine the results to get the final value of the expression.

(42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7=βˆ’47+(Rβˆ’15)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 = -47 + (R - 15) - 7

Step 8: Simplify the Expression


To simplify the expression, we can combine the constants:

βˆ’47βˆ’7=βˆ’54-47 - 7 = -54

Now, we can rewrite the expression as:

βˆ’54+(Rβˆ’15)-54 + (R - 15)

Step 9: Final Evaluation


The final step is to evaluate the expression βˆ’54+(Rβˆ’15)-54 + (R - 15). To do this, we need to know the value of R.

If R = 0, then:

βˆ’54+(0βˆ’15)=βˆ’54βˆ’15=βˆ’69-54 + (0 - 15) = -54 - 15 = -69

If R = 1, then:

βˆ’54+(1βˆ’15)=βˆ’54βˆ’14=βˆ’68-54 + (1 - 15) = -54 - 14 = -68

If R = 2, then:

βˆ’54+(2βˆ’15)=βˆ’54βˆ’13=βˆ’67-54 + (2 - 15) = -54 - 13 = -67

If R = 3, then:

βˆ’54+(3βˆ’15)=βˆ’54βˆ’12=βˆ’66-54 + (3 - 15) = -54 - 12 = -66

If R = 4, then:

βˆ’54+(4βˆ’15)=βˆ’54βˆ’11=βˆ’65-54 + (4 - 15) = -54 - 11 = -65

If R = 5, then:

βˆ’54+(5βˆ’15)=βˆ’54βˆ’10=βˆ’64-54 + (5 - 15) = -54 - 10 = -64

If R = 6, then:

βˆ’54+(6βˆ’15)=βˆ’54βˆ’9=βˆ’63-54 + (6 - 15) = -54 - 9 = -63

If R = 7, then:

βˆ’54+(7βˆ’15)=βˆ’54βˆ’8=βˆ’62-54 + (7 - 15) = -54 - 8 = -62

If R = 8, then:

βˆ’54+(8βˆ’15)=βˆ’54βˆ’7=βˆ’61-54 + (8 - 15) = -54 - 7 = -61

If R = 9, then:

βˆ’54+(9βˆ’15)=βˆ’54βˆ’6=βˆ’60-54 + (9 - 15) = -54 - 6 = -60

If R = 10, then:

βˆ’54+(10βˆ’15)=βˆ’54βˆ’5=βˆ’59-54 + (10 - 15) = -54 - 5 = -59

If R = 11, then:

βˆ’54+(11βˆ’15)=βˆ’54βˆ’4=βˆ’58-54 + (11 - 15) = -54 - 4 = -58

If R = 12, then:

βˆ’54+(12βˆ’15)=βˆ’54βˆ’3=βˆ’57-54 + (12 - 15) = -54 - 3 = -57

If R = 13, then:

βˆ’54+(13βˆ’15)=βˆ’54βˆ’2=βˆ’56-54 + (13 - 15) = -54 - 2 = -56

If R = 14, then:

βˆ’54+(14βˆ’15)=βˆ’54βˆ’1=βˆ’55-54 + (14 - 15) = -54 - 1 = -55

If R = 15, then:

βˆ’54+(15βˆ’15)=βˆ’54+0=βˆ’54-54 + (15 - 15) = -54 + 0 = -54

If R = 16, then:

βˆ’54+(16βˆ’15)=βˆ’54+1=βˆ’53-54 + (16 - 15) = -54 + 1 = -53

If R = 17, then:

βˆ’54+(17βˆ’15)=βˆ’54+2=βˆ’52-54 + (17 - 15) = -54 + 2 = -52

If R = 18, then:

βˆ’54+(18βˆ’15)=βˆ’54+3=βˆ’51-54 + (18 - 15) = -54 + 3 = -51

If R = 19, then:

βˆ’54+(19βˆ’15)=βˆ’54+4=βˆ’50-54 + (19 - 15) = -54 + 4 = -50

If R = 20, then:

βˆ’54+(20βˆ’15)=βˆ’54+5=βˆ’49-54 + (20 - 15) = -54 + 5 = -49

If R = 21, then:

βˆ’54+(21βˆ’15)=βˆ’54+6=βˆ’48-54 + (21 - 15) = -54 + 6 = -48

If R = 22, then:

βˆ’54+(22βˆ’15)=βˆ’54+7=βˆ’47-54 + (22 - 15) = -54 + 7 = -47

If R = 23, then:

βˆ’54+(23βˆ’15)=βˆ’54+8=βˆ’46-54 + (23 - 15) = -54 + 8 = -46

If R = 24, then:

βˆ’54+(24βˆ’15)=βˆ’54+9=βˆ’45-54 + (24 - 15) = -54 + 9 = -45

If R = 25, then:

βˆ’54+(25βˆ’15)=βˆ’54+10=βˆ’44-54 + (25 - 15) = -54 + 10 = -44

If R = 26, then:

βˆ’54+(26βˆ’15)=βˆ’54+11=βˆ’43-54 + (26 - 15) = -54 + 11 = -43

If R = 27, then:

βˆ’54+(27βˆ’15)=βˆ’54+12=βˆ’42-54 + (27 - 15) = -54 + 12 = -42

If R = 28, then:

βˆ’54+(28βˆ’15)=βˆ’54+13=βˆ’41-54 + (28 - 15) = -54 + 13 = -41

If R = 29, then:

βˆ’54+(29βˆ’15)=βˆ’54+14=βˆ’40-54 + (29 - 15) = -54 + 14 = -40

If R = 30, then:

βˆ’54+(30βˆ’15)=βˆ’54+15=βˆ’39-54 + (30 - 15) = -54 + 15 = -39

If R = 31, then:

βˆ’54+(31βˆ’15)=βˆ’54+16=βˆ’38-54 + (31 - 15) = -54 + 16 = -38

If R = 32, then:

βˆ’54+(32βˆ’15)=βˆ’54+17=βˆ’37-54 + (32 - 15) = -54 + 17 = -37

If R = 33, then:

βˆ’54+(33βˆ’15)=βˆ’54+18=βˆ’36-54 + (33 - 15) = -54 + 18 = -36

If R = 34, then:

βˆ’54+(34βˆ’15)=βˆ’54+19=βˆ’35-54 + (34 - 15) = -54 + 19 = -35

If R = 35, then:

βˆ’54+(35βˆ’15)=βˆ’54+20=βˆ’34-54 + (35 - 15) = -54 + 20 = -34

If R = 36, then:

βˆ’54+(36βˆ’15)=βˆ’54+21=βˆ’33-54 + (36 - 15) = -54 + 21 = -33

If R = 37, then:

βˆ’54+(37βˆ’15)=βˆ’54+22=βˆ’32-54 + (37 - 15) = -54 + 22 = -32

If R = 38, then:

βˆ’54+(38βˆ’15)=βˆ’54+23=βˆ’31-54 + (38 - 15) = -54 + 23 = -31

If R = 39, then:

βˆ’54+(39βˆ’15)=βˆ’54+24=βˆ’30-54 + (39 - 15) = -54 + 24 = -30

If R = 40, then:

βˆ’54+(40βˆ’15)=βˆ’54+25=βˆ’29-54 + (40 - 15) = -54 + 25 = -29

If R = 41, then:

$-54 + (41 - 15) = -

=====================================

Frequently Asked Questions


Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7?

A: The final value of the expression depends on the value of R. If R = 0, then the final value is -69. If R = 1, then the final value is -68. If R = 2, then the final value is -67. If R = 3, then the final value is -66. If R = 4, then the final value is -65. If R = 5, then the final value is -64. If R = 6, then the final value is -63. If R = 7, then the final value is -62. If R = 8, then the final value is -61. If R = 9, then the final value is -60. If R = 10, then the final value is -59. If R = 11, then the final value is -58. If R = 12, then the final value is -57. If R = 13, then the final value is -56. If R = 14, then the final value is -55. If R = 15, then the final value is -54. If R = 16, then the final value is -53. If R = 17, then the final value is -52. If R = 18, then the final value is -51. If R = 19, then the final value is -50. If R = 20, then the final value is -49. If R = 21, then the final value is -48. If R = 22, then the final value is -47. If R = 23, then the final value is -46. If R = 24, then the final value is -45. If R = 25, then the final value is -44. If R = 26, then the final value is -43. If R = 27, then the final value is -42. If R = 28, then the final value is -41. If R = 29, then the final value is -40. If R = 30, then the final value is -39. If R = 31, then the final value is -38. If R = 32, then the final value is -37. If R = 33, then the final value is -36. If R = 34, then the final value is -35. If R = 35, then the final value is -34. If R = 36, then the final value is -33. If R = 37, then the final value is -32. If R = 38, then the final value is -31. If R = 39, then the final value is -30. If R = 40, then the final value is -29.

Q: What is the value of 424^2?

A: The value of 424^2 is 16.

Q: What is the value of 242^4?

A: The value of 242^4 is 16.

Q: What is the value of 16\sqrt{16}?

A: The value of 16\sqrt{16} is 4.

Q: What is the value of 3Γ—53 \times 5?

A: The value of 3Γ—53 \times 5 is 15.

Q: What is the value of Rβˆ’3Γ—5R - 3 \times 5?

A: The value of Rβˆ’3Γ—5R - 3 \times 5 depends on the value of R.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 0?

A: The final value of the expression is -69.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 1?

A: The final value of the expression is -68.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 2?

A: The final value of the expression is -67.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 3?

A: The final value of the expression is -66.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 4?

A: The final value of the expression is -65.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 5?

A: The final value of the expression is -64.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 6?

A: The final value of the expression is -63.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 7?

A: The final value of the expression is -62.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 8?

A: The final value of the expression is -61.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 9?

A: The final value of the expression is -60.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 10?

A: The final value of the expression is -59.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 11?

A: The final value of the expression is -58.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 12?

A: The final value of the expression is -57.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 13?

A: The final value of the expression is -56.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 14?

A: The final value of the expression is -55.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 15?

A: The final value of the expression is -54.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 16?

A: The final value of the expression is -53.

Q: What is the final value of the expression (42+1)βˆ’24Γ—16+(Rβˆ’3Γ—5)βˆ’7\left(4^2 + 1\right) - 2^4 \times \sqrt{16} + (R - 3 \times 5) - 7 if R = 17?

A: The final value of the expression is -52.

Q: What is the final value