x)%20%5Csin%20((n%2B2)x)%20%2B%20%5Ccos%20((n%2B1)x)%20%5Ccos%20((n%2B2)x)%20%3D%20%5Ccos%20x%24)
Introduction
In this article, we will simplify the given trigonometric expression involving sine and cosine functions. The expression is sin((n+1)x)sin((n+2)x)+cos((n+1)x)cos((n+2)x)=cosx. We will use various trigonometric identities and formulas to simplify the expression and arrive at the final result.
Trigonometric Identities
Before we proceed with the simplification, let's recall some basic trigonometric identities that we will use in this article.
- Sine and Cosine Product Formula: sinAsinB=21β[cos(AβB)βcos(A+B)]
- Cosine Product Formula: cosAcosB=21β[cos(AβB)+cos(A+B)]
- Cosine Double Angle Formula: cos2A=2cos2Aβ1
- Sine Double Angle Formula: sin2A=2sinAcosA
Simplifying the Expression
Now, let's simplify the given expression using the trigonometric identities mentioned above.
sin((n+1)x)sin((n+2)x)+cos((n+1)x)cos((n+2)x)
Using the Sine and Cosine Product Formula, we can rewrite the expression as:
21β[cos((n+1)xβ(n+2)x)βcos((n+1)x+(n+2)x)]+21β[cos((n+1)xβ(n+2)x)+cos((n+1)x+(n+2)x)]
Simplifying the expression further, we get:
cosx
Derivation of the Expression
Let's derive the given expression using the Cosine Double Angle Formula.
cos2A=2cos2Aβ1
We can rewrite the expression as:
cos2A=2cos2Aβ1
cos2A+1=2cos2A
2cos2A+1β=cos2A
cos2A=2cos2A+1β
Now, let's substitute A=(n+1)x and B=(n+2)x in the above expression.
cos2((n+1)x)=2cos2((n+1)x)+1β
cos2((n+1)x)=2cos2(n+1)x+1β
cos2((n+1)x)=2cos2nx+2cos2x+1β
cos2((n+1)x)=2cos2nx+2cos2x+1β
Conclusion
In this article, we simplified the given trigonometric expression involving sine and cosine functions. We used various trigonometric identities and formulas to simplify the expression and arrive at the final result. The expression sin((n+1)x)sin((n+2)x)+cos((n+1)x)cos((n+2)x)=cosx can be simplified using the Sine and Cosine Product Formula and the Cosine Double Angle Formula.
Final Answer
The final answer is cosxβ.
References
- [1] Trigonometry by Michael Corral
- [2] Calculus by Michael Spivak
- [3] Mathematics by G.H. Hardy
Related Articles
Frequently Asked Questions
Q: What is the given expression?
A: The given expression is sin((n+1)x)sin((n+2)x)+cos((n+1)x)cos((n+2)x)=cosx.
Q: How can we simplify the given expression?
A: We can simplify the given expression using the Sine and Cosine Product Formula and the Cosine Double Angle Formula.
Q: What is the final result of the simplification?
A: The final result of the simplification is cosx.
Q: What are the trigonometric identities used in the simplification?
A: The trigonometric identities used in the simplification are:
- Sine and Cosine Product Formula: sinAsinB=21β[cos(AβB)βcos(A+B)]
- Cosine Product Formula: cosAcosB=21β[cos(AβB)+cos(A+B)]
- Cosine Double Angle Formula: cos2A=2cos2Aβ1
- Sine Double Angle Formula: sin2A=2sinAcosA
Q: How can we derive the expression cos2A=2cos2Aβ1?
A: We can derive the expression cos2A=2cos2Aβ1 using the Cosine Double Angle Formula.
Q: What is the significance of the expression cos2A=2cos2Aβ1?
A: The expression cos2A=2cos2Aβ1 is a fundamental trigonometric identity that can be used to simplify various trigonometric expressions.
Q: How can we use the expression cos2A=2cos2Aβ1 to simplify the given expression?
A: We can use the expression cos2A=2cos2Aβ1 to simplify the given expression by substituting A=(n+1)x and B=(n+2)x.
Q: What is the final answer to the given expression?
A: The final answer to the given expression is cosxβ.
Related Questions
Conclusion
In this article, we answered frequently asked questions related to the simplification of the expression sin((n+1)x)sin((n+2)x)+cos((n+1)x)cos((n+2)x)=cosx. We used various trigonometric identities and formulas to simplify the expression and arrive at the final result. The expression sin((n+1)x)sin((n+2)x)+cos((n+1)x)cos((n+2)x)=cosx can be simplified using the Sine and Cosine Product Formula and the Cosine Double Angle Formula.
Final Answer
The final answer is cosxβ.
References
- [1] Trigonometry by Michael Corral
- [2] Calculus by Michael Spivak
- [3] Mathematics by G.H. Hardy
Related Articles