The Roots Of The Equation $2x^2 + (a+1)x + B = 0$ Are 1 And 3, Where $a$ And $ B B B [/tex] Are Constants. Find The Values Of $a$ And $b$.7. The Equation $ax^2 + Bx + C = 0$ Has Roots

by ADMIN 194 views

===========================================================

Introduction


In this article, we will explore the concept of finding the values of constants in a quadratic equation given its roots. A quadratic equation is a polynomial equation of degree two, which means the highest power of the variable is two. The general form of a quadratic equation is $ax^2 + bx + c = 0$, where $a$, $b$, and $c$ are constants, and $x$ is the variable.

The Given Equation


The given equation is $2x^2 + (a+1)x + b = 0$, and its roots are 1 and 3. This means that when we substitute $x = 1$ and $x = 3$ into the equation, it should satisfy the equation.

Substituting the Roots


Let's substitute $x = 1$ into the equation:

2(1)2+(a+1)(1)+b=02(1)^2 + (a+1)(1) + b = 0

Simplifying the equation, we get:

2+a+1+b=02 + a + 1 + b = 0

Combine like terms:

a+b+3=0a + b + 3 = 0

Now, let's substitute $x = 3$ into the equation:

2(3)2+(a+1)(3)+b=02(3)^2 + (a+1)(3) + b = 0

Simplifying the equation, we get:

18+3a+3+b=018 + 3a + 3 + b = 0

Combine like terms:

3a+b+21=03a + b + 21 = 0

Solving the System of Equations


We now have a system of two equations with two variables:

a+b+3=0a + b + 3 = 0

3a+b+21=03a + b + 21 = 0

We can solve this system of equations using substitution or elimination. Let's use the elimination method.

Elimination Method


Subtract the first equation from the second equation:

(3a+b+21)(a+b+3)=00(3a + b + 21) - (a + b + 3) = 0 - 0

Simplifying the equation, we get:

2a+18=02a + 18 = 0

Subtract 18 from both sides:

2a=182a = -18

Divide both sides by 2:

a=9a = -9

Finding the Value of b


Now that we have the value of $a$, we can substitute it into one of the original equations to find the value of $b$. Let's use the first equation:

a+b+3=0a + b + 3 = 0

Substitute $a = -9$:

9+b+3=0-9 + b + 3 = 0

Simplify the equation:

b6=0b - 6 = 0

Add 6 to both sides:

b=6b = 6

Conclusion


In this article, we found the values of $a$ and $b$ in the quadratic equation $2x^2 + (a+1)x + b = 0$ given its roots 1 and 3. We used the substitution method to find the values of $a$ and $b$.

The Final Answer


The final answer is:

a=9a = -9

b=6b = 6

Discussion


The equation $ax^2 + bx + c = 0$ has roots 1 and 3. We can use the same method to find the values of $a$, $b$, and $c$ in this equation.

Example


Let's consider the equation $x^2 + (a+1)x + b = 0$ with roots 1 and 3. We can follow the same steps as before to find the values of $a$ and $b$.

Solution


Substitute $x = 1$ into the equation:

12+(a+1)(1)+b=01^2 + (a+1)(1) + b = 0

Simplify the equation:

1+a+1+b=01 + a + 1 + b = 0

Combine like terms:

a+b+2=0a + b + 2 = 0

Now, let's substitute $x = 3$ into the equation:

32+(a+1)(3)+b=03^2 + (a+1)(3) + b = 0

Simplify the equation:

9+3a+3+b=09 + 3a + 3 + b = 0

Combine like terms:

3a+b+12=03a + b + 12 = 0

Solving the System of Equations


We now have a system of two equations with two variables:

a+b+2=0a + b + 2 = 0

3a+b+12=03a + b + 12 = 0

We can solve this system of equations using substitution or elimination. Let's use the elimination method.

Elimination Method


Subtract the first equation from the second equation:

(3a+b+12)(a+b+2)=00(3a + b + 12) - (a + b + 2) = 0 - 0

Simplify the equation:

2a+10=02a + 10 = 0

Subtract 10 from both sides:

2a=102a = -10

Divide both sides by 2:

a=5a = -5

Finding the Value of b


Now that we have the value of $a$, we can substitute it into one of the original equations to find the value of $b$. Let's use the first equation:

a+b+2=0a + b + 2 = 0

Substitute $a = -5$:

5+b+2=0-5 + b + 2 = 0

Simplify the equation:

b3=0b - 3 = 0

Add 3 to both sides:

b=3b = 3

Conclusion


In this article, we found the values of $a$ and $b$ in the quadratic equation $x^2 + (a+1)x + b = 0$ given its roots 1 and 3. We used the substitution method to find the values of $a$ and $b$.

The Final Answer


The final answer is:

a=5a = -5

b = 3$<br/> # 7. Frequently Asked Questions (FAQs) About Finding the Values of Constants in a Quadratic Equation

Introduction


In the previous article, we explored the concept of finding the values of constants in a quadratic equation given its roots. In this article, we will answer some frequently asked questions (FAQs) about this topic.

Q&A


Q: What is a quadratic equation?

A: A quadratic equation is a polynomial equation of degree two, which means the highest power of the variable is two. The general form of a quadratic equation is $ax^2 + bx + c = 0$, where $a$, $b$, and $c$ are constants, and $x$ is the variable.

Q: How do I find the values of constants in a quadratic equation?

A: To find the values of constants in a quadratic equation, you need to know the roots of the equation. You can use the substitution method or the elimination method to find the values of constants.

Q: What is the substitution method?

A: The substitution method is a method of solving a system of equations by substituting one equation into another equation. In the context of finding the values of constants in a quadratic equation, you substitute the roots of the equation into the equation to find the values of constants.

Q: What is the elimination method?

A: The elimination method is a method of solving a system of equations by eliminating one variable. In the context of finding the values of constants in a quadratic equation, you eliminate one variable by subtracting one equation from another equation.

Q: How do I know which method to use?

A: You can use either the substitution method or the elimination method to find the values of constants in a quadratic equation. The choice of method depends on the specific equation and the roots of the equation.

Q: What if I have a quadratic equation with complex roots?

A: If you have a quadratic equation with complex roots, you can use the same methods to find the values of constants. However, you need to be careful when working with complex numbers.

Q: Can I use a calculator to find the values of constants in a quadratic equation?

A: Yes, you can use a calculator to find the values of constants in a quadratic equation. However, it's always a good idea to check your work by hand to make sure you get the correct answer.

Q: What if I have a quadratic equation with no real roots?

A: If you have a quadratic equation with no real roots, it means that the equation has complex roots. You can use the same methods to find the values of constants, but you need to be careful when working with complex numbers.

Conclusion


In this article, we answered some frequently asked questions (FAQs) about finding the values of constants in a quadratic equation. We hope this article has been helpful in clarifying any doubts you may have had about this topic.

The Final Answer


The final answer is:

  • The substitution method and the elimination method are two methods of finding the values of constants in a quadratic equation.
  • The choice of method depends on the specific equation and the roots of the equation.
  • You can use a calculator to find the values of constants in a quadratic equation, but it's always a good idea to check your work by hand to make sure you get the correct answer.

Discussion


The equation $ax^2 + bx + c = 0$ has roots 1 and 3. We can use the same methods to find the values of $a$, $b$, and $c$ in this equation.

Example


Let's consider the equation $x^2 + (a+1)x + b = 0$ with roots 1 and 3. We can follow the same steps as before to find the values of $a$ and $b$.

Solution


Substitute $x = 1$ into the equation:

1^2 + (a+1)(1) + b = 0 </span></p> <p>Simplify the equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>1</mn><mo>+</mo><mi>a</mi><mo>+</mo><mn>1</mn><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">1 + a + 1 + b = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Combine like terms:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a + b + 2 = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Now, let's substitute $x = 3$ into the equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msup><mn>3</mn><mn>2</mn></msup><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mn>3</mn><mo stretchy="false">)</mo><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">3^2 + (a+1)(3) + b = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9474em;vertical-align:-0.0833em;"></span><span class="mord"><span class="mord">3</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord">3</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Simplify the equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>9</mn><mo>+</mo><mn>3</mn><mi>a</mi><mo>+</mo><mn>3</mn><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">9 + 3a + 3 + b = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">9</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Combine like terms:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>3</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>12</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">3a + b + 12 = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">12</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <h2>Solving the System of Equations</h2> <hr> <p>We now have a system of two equations with two variables:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a + b + 2 = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>3</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>12</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">3a + b + 12 = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">3</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">12</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>We can solve this system of equations using substitution or elimination. Let's use the elimination method.</p> <h2>Elimination Method</h2> <hr> <p>Subtract the first equation from the second equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo stretchy="false">(</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>12</mn><mo stretchy="false">)</mo><mo>−</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>2</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>−</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">(3a + b + 12) - (a + b + 2) = 0 - 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">3</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">12</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Simplify the equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mn>10</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">2a + 10 = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">2</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">10</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Subtract 10 from both sides:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mn>2</mn><mi>a</mi><mo>=</mo><mo>−</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">2a = -10 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">−</span><span class="mord">10</span></span></span></span></span></p> <p>Divide both sides by 2:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>a</mi><mo>=</mo><mo>−</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">a = -5 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">−</span><span class="mord">5</span></span></span></span></span></p> <h2>Finding the Value of b</h2> <hr> <p>Now that we have the value of $a$, we can substitute it into one of the original equations to find the value of $b$. Let's use the first equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a + b + 2 = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6667em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Substitute $a = -5$:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo>−</mo><mn>5</mn><mo>+</mo><mi>b</mi><mo>+</mo><mn>2</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">-5 + b + 2 = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">−</span><span class="mord">5</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Simplify the equation:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>b</mi><mo>−</mo><mn>3</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">b - 3 = 0 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7778em;vertical-align:-0.0833em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">0</span></span></span></span></span></p> <p>Add 3 to both sides:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>b</mi><mo>=</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">b = 3 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span></span></span></span></span></p> <h2>Conclusion</h2> <hr> <p>In this article, we found the values of $a$ and $b$ in the quadratic equation $x^2 + (a+1)x + b = 0$ given its roots 1 and 3. We used the substitution method to find the values of $a$ and $b$.</p> <h2>The Final Answer</h2> <hr> <p>The final answer is:</p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>a</mi><mo>=</mo><mo>−</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">a = -5 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.4306em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.7278em;vertical-align:-0.0833em;"></span><span class="mord">−</span><span class="mord">5</span></span></span></span></span></p> <p class='katex-block'><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>b</mi><mo>=</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">b = 3 </annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6944em;"></span><span class="mord mathnormal">b</span><span class="mspace" style="margin-right:0.2778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2778em;"></span></span><span class="base"><span class="strut" style="height:0.6444em;"></span><span class="mord">3</span></span></span></span></span></p>